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Graph theoretical techniques are demonstrated to be of considerable use in the search for stable arrangements
of water clusters. Inspired by the so-called “ice rules” that govern which hydrogen-bond networks are physically
possible in the condensed phase, we use graphical techniques to generate a multitude of local minima of
neutral and protonated water clusters using oriented graph theory. Efficient techniques to precisely enumerate
all possible hydrogen-bonding topologies are presented. Empirical rules regarding favorable water neighbor
geometries are developed that indicate which of the multitude of hydrogen-bonding topologies available to
large water clathrates (e.g., 30 026 for (H2O)20) are likely to be the most stable structures. The cubic (H2O)8
and dodecahedral (H2O)20 clusters and their protonated analogues are treated as examples. In these structures
every molecule is hydrogen bonded to three others, which leads to hydrogen-bonding topology fixing the
cluster geometry. Graphical techniques can also be applied to geometrically irregular structures as well.
The enumerated oriented graphs are used to generate initial guesses for optimization using various potential
models. The hydrogen-bonding topology was found to have a significant effect on cluster stability, even
though the total number of hydrogen bonds is conserved. For neutral clusters, the relationship between oriented
graphs and local minima of several potential models appears to be one-to-one. The stability of the different
topologies is rationalized primarily in terms of the number of nearest neighbor pairs that both have a free OH
bond. This leads to the identification of water dodecahedra of greatest stability.

Considerable effort has been devoted to the theoretical
prediction of the locally stable configurations of small water
clusters, the identification of the global minimum from among
the many local minima, and the experimental testing of these
results.1-40,80 The motivation for this intense interest is the need
to accurately model water as a solvent for chemical processes,
especially for modeling biochemical and environmental pro-
cesses. The study of finite clusters provides a testing ground
for detailed verification of models of water,41-51which can then
be applied in bulk situations. The locally stable arrangements
and thermal behavior of water clusters are also of fundamental
intellectual interest, the main issues being the unusual properties
of finite systems compared to the bulk and how the bulk limit
is approached as cluster size tends toward macroscopic
dimensions.52-55

Several attempts have been made to systematically generate
the locally stable geometries of small water clusters and predict
their relative energies. Tsai and Jordan have performed the most
exhaustive searches using an eigenmode-following algorithm.27-30

While of moderate computational cost for smaller clusters, the
task of exhaustive enumeration of locally stable isomers rapidly
increases in complexity with cluster size, not only because of
the increasing cost of evaluating the potential and its derivatives
but also because the number of local minima increases
exponentially with cluster size. The purpose of this work is to
provide some analytical guidance and theoretical understanding
to complement previous numerical work. This guidance proves

essential for the study of larger clusters, such as the (H2O)20
and H+(H2O)20 cage structures. These structures are treated in
this paper and are shown to possess tens of thousands of distinct
(not symmetry-related) local minima. Candidates for the most
stable of these structures are presented here.
The central physical assumption leading to an analytical

method for enumeration of local structures is that each water
molecule may participate in a maximum of two hydrogen bonds
as a hydrogen donor and, through the two lone pairs, up to two
hydrogen bonds as an acceptor. These ideas have been central
in the literature on water and ice for many years.56-58 Their
expression for solid water structures are the so-called “ice rules”
or “Bernal-Fowler” rules.59,60 In the liquid phase, they motivate
older flickering crystal theories59 and more recent random
network models for water. A hydronium ion can donate up to
three hydrogen bonds. By inspection of the many published
structures available for water clusters and bulk water, virtually
all hydrogen bonds between water molecules can be assigned a
direction, which we take to be from donor to acceptor. The
one exception is symmetrical hydrogen bonds whose prototype
is the H5O2

+ ion.35,61 Structures with the excess proton in a
symmetrical hydrogen bond can also be enumerated using graph
theory by assigning either a nondirectional or empty bond to
the unit carrying the excess charge.
When a water molecule participates in four (Figure 1a) or

three (Figure 1b,c) hydrogen bonds, its position is fixed by those
bonds and we expect only a single minimum energy position
for that water molecule. In low-energy structures of small (n
j 25) water clusters, four-coordinated waters are relatively rare,
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occurring for example in multiple-cube structures, but three-
coordination is quite common. A doubly-coordinated, double-
acceptor or double-donor water (Figure 1d,e) may also be fixed
by virtue of its hydrogen bonding to other waters. However, a
double-coordinated, single-donor water should have at least two
minimum energy positions (Figure 1f1,f2), according to which
lone pair accepts an incoming hydrogen bond. Singly-bonded
waters should be rather floppy.
The topology of hydrogen bonds in a water cluster is

summarized by an oriented graph, that is, a set of vertices and
at most one oriented line connecting each pair of vertices. This
idea has been previously pursued by Radhakrishnan and
Herndon.62 They performed ab initio calculations for selected
structures, based on oriented graphs, for clusters as large as the
cyclic octamer. Radhakrishnan and Herndon then correlated
their ab initio results with topological invariants of the oriented
graphs. Our work is in that respect similar in spirit to that of
Radhakrishnan and Herndon. In our work, new graph derivation
methods for H-bonded clusters are presented, which allows us
to tackle, in a systematic manner, much more complex
structures, including a 20-member dodecahedral cage, where
the enumeration problem has not previously been solved. We
focus on structures in which the waters are minimally three-
coordinate, so it is more likely that physical local potential
energy minima are in one-to-one correspondence with oriented
graphs. We also consider both neutral and protonated clusters,
using the “OSS2” potential energy surface developed by
Ojamäe, Shavitt, and Singer63 and semiempirical PM3 calcula-
tions64,65 to extend the description to protonated clusters. A
trend we observe for clusters of 8 and 20 water molecules,
namely destabilization of the cluster associated with adjacent
double-donor or double-acceptor water molecules, was previ-
ously noted by Smith and Dang for Cs+(H2O)2022 and (H2O)20.66

Our working assumption is that, when the molecules are fixed

by the hydrogen bonding arrangement, each local minimum of
a water cluster corresponds to a single oriented graph. As
discussed above, this occurs when the water molecules partici-
pate in two or more hydrogen bonds, except for the single-
donor/single-acceptor case where two local minima would
correspond to a single graph. For some water clusters, it appears
that the relationship is also one-to-one, that for each oriented
graph a corresponding-local minimum in found. For protonated
water clusters, our experience is that not every graph has a
corresponding local minimum. These conclusions may depend
on the potential energy surface and skill in guessing initial
geometries for optimization. When our working assumption is
accurate, as would be expected for compact structures, oriented
graphs provide a valuable enumeration of the local minima of
water clusters. In this paper we discuss enumeration techniques
(section I), cubic clusters of eight waters (section II), and
dodecahedral cages of 20 waters (section III). We conclude
with an assessment of the utility of graphical techniques for
enumeration of water structures.

I. Enumeration Techniques

Enumeration techniques for oriented graphs were developed
by Harary67with some specific formulas and methods for locally
restricted graphs (as when ice rules are enforced) later offered
by Harary and Palmer.68,69 The general class of techniques
without local constraints is based on a theorem by Polya and is
described in several texts.70-72 Polya’s theorem gives us an
upper bound to the number of hydrogen-bonding arrangements,
since at this level the ice rules are not enforced.
Polya’s theorem gives the total number of oriented graphs

with m bonds based on the symmetry group of the vertices,71

that is, the set of all permutations of the vertex labels that
maintain the bonding arrangement. The symmetry group on

Figure 1. Depiction of a water molecule participating in (a) two hydrogen bonds as a donor and two as an acceptor, (b) two hydrogen bonds as
a donor and one as an acceptor, (c) one hydrogen bond as a donor and two as an acceptor, (d) no hydrogen bonds as a donor and two as an acceptor,
(e) two hydrogen bonds as a donor and none as an acceptor, and (f1 and f2) one hydrogen bond as a donor and one as an acceptor, showing the two
possible orientations in the latter case.
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the vertices induces an isomorphic symmetry group on oriented
bonds. Each member of the bond group must be resolved into
independent cycles, from which a cycle index polynomial is
generated. To enumerate oriented graphs, the appropriate cycle
index polynomial is67,68,71

where the sum indexed byi is over all members of the group
G of permutations on oriented bonds, the product indexed byk
is over all pairs of converse cycles of group elementi, andnk
is the length of cyclek or group elementi. The converse of a
cycle is the cycle generated by reversing every oriented bond.
Self-converse cycles are not included in the cycle index
polynomial.
We have determined the cycle index polynomials for a cube

and dodecahedron appropriate for counting of oriented graphs:

Polya’s theorem relates the number of symmetry-distinct
graphs withm oriented bonds to the coefficient ofxm in the
polynomial obtained by replacingbn with 1 + 2xn in the cycle
index polynomials. For the cube and dodecahedron, the results
are

To illustrate the significance of terms in the above equation,
the final term indicates that there are 8 948 312 topologically
distinct ways to arrange 30 oriented bonds on a dodecahedral
graph. Some of these arrangements correspond to neutral
clusters, some to an excess proton, and many, such as those in
which a vertex has three incoming bonds, to hydrogen-bonding
arrangements that are not physically realizable. The cycle index
polynomials were easily generated from the permutation groups
using a symbolic algebra program.73

Upon enforcement of local constraintssin this work, the ice
rulessthe enumeration problem becomes considerably more
complex. Harary and Palmer69 have given a procedure that is
valid for local constraints. However, the algebra involved is
too lengthy, even for machine evaluation (involving, e.g.,

manipulation of∼120‚230≈ 1012 terms for the dodecahedron),
and we were forced to develop a more efficient procedure.
Our graphical enumeration procedure for locally restricted

graphs also rests upon representation of graphical configurations
with polynomials. A factor ofµiνjxij in a term of the polynomial
indicates a bond in which vertexi donates a hydrogen bond to
j (i.e., an oriented bond pointing fromi to j). All possible
oriented graphs are generated by the polynomial

Each factor (µiνjxij + µjνixji) gives the two possible orientations
at each bond pair. The above polynomial enumerates graphs
in which each possible bond pair is occupied by an oriented
bond. If unoccupied bonds are also to be included in the
enumeration, then (µiνjxij + µjνixji) is replaced with (1+ µiνjxij
+ µjνixji).
Since the power ofµi andνi in each term gives the number

of outgoing and incoming bonds at vertexi, respectively, the
ice rules for neutral clusters are enforced by annihilating an
terms in eq 6 in which the power ofµi or νi exceeds 2. For
clusters containing a hydronium, one vertex is allowed to have
three outgoing bonds.
So far, this procedure would enumerate many oriented graphs

that are related to another by a symmetry operation. The next
step would be a partition of the terms into equivalence classes,
with members of each equivalence class related to each other
by a permutation of the vertices. Selection of a single
representative from each equivalence class completes the
enumeration.
The number of terms in eq 6 makes the procedure, as

described so far, prohibitively lengthy. However, it can be
considerably shortened by annihilating all terms in violation of
the ice rules or related to others by a symmetry operation after
multiplication by each factor (µiνjxij + µjνixji) [or (1 + µiνjxij
+ µjνixji) if unoccupied bonds are allowed]. In words, the set
of all graphs is incrementally constructed by decorating one
bond at a time. If two partially constructed graphs are related
to each other by a symmetry operation, they will give rise to
the same set of fully occupied graphs, to within a symmetry
operation, upon addition of more bonds. Therefore, only one
of the partially constructed graphs related to each other by a
symmetry operation need be retained at each stage. The same
considerations apply to enforcement of the ice rules. If a
partially constructed graph violates the ice rules, then all graphs
made by adding more oriented bonds will also violate the ice
rules. If we letA symbolize the operator which annihilates terms
in violation of the ice rules or which are related to others by a
symmetry operation, then symbolically we are stating that the
left and right hand sides of the following equation are equivalent
and that the right hand side is far more efficient to enumerate.

Later we shall see that the number of oriented graphs that satisfy
the ice rules is roughly 10% of the total number of oriented
graphs.
For the neutral and protonated water clusters considered in

this work, each water molecule can be classed as single- or
double-donors of hydrogen bonds and/or single- or double-
acceptors of hydrogen bonds. A hydronium unit may also be
a triple donor or zero-acceptor. Withnbond the number of

Z)
1

|G|∑i)1
|G|
(∏

k

bnk) (1)

Zcube) 1/48(b1
12 + 3b2

4 + 6b2
5 + 6b1

2 b2
5 + 4b2

6 + 8b3
4 +

12b4
3 + 8b6

2) (2)

Zdodec)
1/120(b1

30 + 15b1
2 b2

13 + 15b2
14 + b2

15 + 20b3
10 +

24b5
6 + 20b6

5 + 24b10
3 ) (3)

cube: 1+ x+ 10x2 + 43x3 + 188x4 + 548x5 + 1292x6 +
2152x7 + 2724x8 + 2392x9 + 1472x10 + 528x11 + 112x12

(4)

dodecahedron: 1+ x+ 22x2 + 287x3 + 3755x4 +
38160x5 + 317548x6 + 2172664x7 +12490998x8 +
61049720x9 + 256403818x10 + 93232651211 +

2952363660x12 + 8175660672x13 + 19855186704x14 +
42357535328x15 + 79420431072x16 +
130809856896x17 + 188947695352x18 +
238670498560x19 + 262537720524x20 +
250035717632x21 + 204574839040x22 +
142312814592x23 + 83015912504x24 +

39847592384x25 + 15326035968x26 + 4541038080x27 +
973086720x28 + 134217728x29 + 8948312x30 (5)
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hydrogen bonds,nO the number of oxygens,nproton the number
of excessprotons,nH ) 2nO + nproton the total number of
hydrogens,mH the number of hydrogens in hydronium units
not participating in a hydrogen bond,m′H the number of zero-
acceptor neutral water units,n1D, n2D, ... the number of single-,
double-, ... donors, andn0A, n1A, ... the number of zero-, single-,
... acceptors, then counting the number of bonds,

oxygens,

and hydrogens,

gives the relations

In the cubic and dodecahedral water clusters studied in this work,
all waters and hydroniums are three-coordinate. In these cases,
nbond ) 3/2nO andm′H ) 0, yielding the simplified relations

II. Cubic (H 2O)8 and H+(H2O)8

The (H2O)8 cluster has recently been observed experimentally,
and its cubic geometry confirmed by comparison with ab initio
predictions.51 For the eight 3-fold coordinated vertices of cubic
(H2O)8, we have enumerated 14 oriented graphs. Initial guesses
for the structures of (H2O)8 were generated from these graphs
by placing oxygen vertices 2.8 Å apart, hydrogens participating
in hydrogen bonds along the oxygen-oxygen bond, and
unbonded hydrogens pointing radially outward from the center
of the cube.74 The structures were first annealed by Monte Carlo
simulated annealing (only energy-lowering moves accepted, i.e.,
T ) 0 K), followed by conjugate gradient refinement. The

potential model was OSS2,63 which can describe both neutral
and protonated water clusters. Each initial guess optimized to
a distinct locally stable structure. The oriented graphs and
structures are depicted in Figure 2.
Previously, local minima of cubic (H2O)8 were numerically

enumerated by Tsai and Jordan27 using a TIPS4P potential
energy surface and an eigenmode-following surface walking
algorithm.28 We find that all of Tsai and Jordan’s reported
structures are in one-to-one correspondence with structures
derived from oriented graphs. The remainder of the 14 local
minima in Figure 2 are among the many local minima of higher
energy that Tsai and Jordan found but did not report. A
comparison of the energies of Tsai and Jordan’s TIPS4P
structures, MP2 calculations (with and without BSSE correction)
at the TIPS4P geometries, and the OSS2 potential63 is given in
Figure 3. The OSS2 potential63 follows the MP2 trend with
greater accuracy than the TIPS4P potential.
It is of considerable interest to develop empirical correlations

between hydrogen-bonding topology and cluster stability,
providing guidance for further theoretical investigation and
practical rules for predicting stable isomers. The relative
energies of the (H2O)8 cube can apparently be described using
very localized topological properties. The curve labeled “fit”
in Figure 3 is

whereE(D2d) is the energy of theD2d structures,n2D-2D is the

Figure 2. Oriented graphs and optimized structures for (H2O)8. The
symmetry group of the graph is also indicated. The first eight structures
were also described by Tsai and Jordan.27 The three clusters ofC1

symmetry are labeled with an extra lettera, b, or c in accordance with
Tsai and Jordan’s notation.

E(cm-1) ) E(D2d) + 17.7933+ 877.09n2D-2D -
75.6473n4-ring (26)

n1D + 2n2D + 3n3D ) nbond (8)

n1A + 2n2A ) nbond (9)

n1D + n2D + n3D ) nO (10)

n0A + n1A + n2A ) nO (11)

2n1D + 2n2D + 3n3D + mH ) nH (12)

3n0A + 2n1A + 2n2A - m′H ) nH (13)

n0A ) nproton+ m′H (14)

n3D ) nproton- mH (15)

n1A ) -2m′H - nbond+ 2nO - 2nproton (16)

n1D ) -mH - nbond+ 2nO + 2nproton (17)

n2A ) m′H + nbond- nO + nproton (18)

n2D ) 2mH + nbond- nO - 2nproton (19)

n0A ) nproton (20)

n3D ) nproton- mH (21)

n1A ) 1/2nO - 2nproton (22)

n1D ) -mH + 1/2nO + nproton (23)

n2A ) 1/2nO + nproton (24)

n2D ) 2mH + 1/2nO - 2nproton (25)
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number of nearest neighbor double-donors (according to the
topological constraints given in eqs 20-25, n2D-2D ) n2A-2A,
the number of nearest neighbor double-acceptors), andn4-ring
is the number of four-membered rings in which all hydrogen
bonds are oriented in the same direction. The above formula
indicates that the relative energy of different hydrogen-bonding
arrangements in (H2O)8 correlates most strongly with an
effective repulsion associated with nearest neighbor double-
donors or -acceptors. This repulsion may arise from the fact
that for adjacent double-acceptors each water molecule has an
unbound OH bond sticking out from the cluster. Repulsion
between these positively charged H-atoms might play a role in
destabilizing these neighbor pairs. Elucidating the physical
mechanism behind these trends will be left to future theoretical
investigations. In this context, note that Radhakrishnan and
Herndon have previously developed correlations between the
energies of water clusters and topological invariants.62

There are 11 oriented graphs with three outgoing lines at one
vertex that correspond to protonated H+(H2O)8 in which the
excess proton associated with a single oxygen in a hydronium-
like configuration (Figure 4). We could generate only six
structures with hydronium-like protons from the 11 initial
guesses corresponding to the oriented graphs. In some cases,
initial guesses for one topological arrangement of H+(H2O)8
optimized to a structure associated with another oriented graph.
In other cases, optimization left the excess proton in an
symmetrical H5O2

+-like bond. In one case, optimization led
to an open, noncubic structure. Initial guesses were generated
in the same manner as for the neutral cluster with two
exceptions. Firstly, the H-O-H angles in the hydronium unit
were opened up slightly. Secondly, we found that an initial
bond length of 2.8 Å sometimes optimized to H5O2

+-like bonds
in which the excess proton was roughly symmetrically placed
between two oxygens. When this occurred, setting the initial
bond length to a slightly larger value of 3.0 Å could force the
excess proton to localize in a hydronium unit in some cases,
while in others optimization still yielded an H5O2

+-like excess
proton. It is possible that we could have found more structures
with hydronium-like protons using more clever initial guesses
for optimization or with a different potential energy model.

It occurred to us that long-range electrostatics might dominate
the energetic trends in the protonated cluster. However, a crude
estimate of charge-dipole couplings based on bond dipoles
along each of the oriented edges revealed no difference among
the 11 graphs (Figure 4) found for H+(H2O)8. The energies of
different hydrogen-bonding arrangements of protonated H+-
(H2O)8 do seem to be correlated with local topological features,
just like their neutral counterparts. Compared to the neutral
cluster, there is an additional topological invariant based on
nearest neighbor sitings available to describe the number of
double-donor or double-acceptor waters near the hydronium.
In addition ton2D-2D andn4-ring, which have the same meaning
as in eq 26, we chosen2A-Hyd, the number of double-acceptors
adjacent to the hydronium, to be the additional parameter in
the following fit

whereE(1) is the energy of structure1 in Figure 4. The energy
cost of adjacent double-donors and gain for circulating rings is
similar to that in the neutral cluster. In addition, there is a
preference for double-donors to be adjacent to the hydronium.
The symmetry-distinct oriented graphs that correspond to

protonated H+(H2O)8 in which the excess proton resides in a
symmetrical H5O2

+-like bond can be easily enumerated by
leaving that bond empty. There are four such oriented graphs,
as shown in Figure 5. Initial guesses from two structures, those
with all four waters hydrogen bound to the H5O2

+ unit
symmetrically configured with respect to the H5O2

+ as double-
acceptors, could be optimized to local minima with the proton
localized symmetrically between two oxygens. The two

Figure 3. Energy differences of cubic (H2O)8 clusters from the energy
of theD2d structure. The plot includes structures calculated using the
TIPS4P potential by Tsai and Jordan,27 MP2 level ab initio energies
calculated at the TIPS4P geometries also taken from the work of Tsai
and Jordan,27 (results with and without BSSE correction are almost
indistinguishable on this plot), and energies calculated by us using the
OSS2 potential.63 Also shown is a fit (eq 26) to the relative energy of
the structures based on two topological invariants, the number of nearest
neighbor double-donors (or double-acceptors) and the number of four-
member rings in which the hydrogen bonds all circulate in the same
direction. The order of the structures corresponds to that in Figure 2.

Figure 4. Oriented graphs and optimized structures for H+(H2O)8 in
which the excess proton is localized on one oxygen in a hydronium-
like unit. The symmetry group of the graph is also indicated. We were
only successful in optimizing initial guesses based on graphs1-6 into
structures corresponding to those graphs. Graph7 optimized to the open
structure shown above. Initial guesses based on graphs8 and 9
optimized to the same structure as graph1. Initial guesses based on
graphs10and11optimized to the same H5O2

+-like structures associated
with graphs2 and1, respectively, in Figure 5.

E(cm-1) ) E(1) - 504.465+ 1107.89n2D-2D +
506.759n2A-Htd - 183.799n4-ring (27)
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structures,3 and 4 in Figure 5, in which the four waters
hydrogen bound to the H5O2

+ unit were not symmetrically
configured, both optimized to the hydronium-like structure1
in Figure 4. Both structures3 and 4 in Figure 5 revert to
structure1 in Figure 4 by a slight deformationsmigration of
the excess proton toward the oxygen which is hydrogen bound
to a double-acceptor and double-donor.

III. Dodecahedral (H2O)20 and H+(H2O)20

Kassner and Hagen75 first proposed that the abundance of
protonated water clusters (H2O)n near n ) 20, 21 could be
explained by dodecahedral clathrate structures. Since that time,
dodecahedral clathrate structures have been invoked on numer-
ous occasions to explain magic number phenomena in beam
experiments.3,11,76,77 The regularity of the geometrical structure,
or even whether the hypothesized dodecahedral structure is
actually present, has been debated in the literature. Plummer
and Chen,78 using the intermolecular potential of Stillinger and
Rahman,56 found that the dodecahedral cage was stable to 200
K in molecular dynamics simulations. Nagashima et al.77

observed a defected dodecahedral cage surrounding a central
ammonium ion in Monte Carlo simulations of (H2O)20NH4

+.
Kozack and Jordan,21 using a potential model for H+(H2O)n in
which a single proton was added as a distinct ionic species,79

searched for minimum energy structures of (H2O)20, H+(H2O)20,
and H+(H2O)21. They found that H+(H2O)20 was most stable
in a highly distorted clathrate, hardly recognizable as a dodeca-
hedron. Khan investigated the stability of (H2O)20, H+(H2O)20,
and H+(H2O)21 using the semiempirical ZINDOmethod, finding
stable dodecahedral structures.36,80 Smith and Dang studied low-
energy structures and thermal properties of Cs+(H2O)20 clus-
ters.22 They found that dodecahedral clathrates were unstable
with respect to defected structures in which five-member rings
were replaced pair a four- and six-membered ring. They
interpreted their findings as an energy cost associated with
adjacent double-acceptors or -donors, anticipating the trends we
observe in a broader class of structures. Using density
functional methods, Laasonen and Klein81 found that dodeca-
hedral H+(H2O)21was not a stable structure and that H+(H2O)20
was either a highly defected dodecahedron or that the excess
proton might be shared between two waters in the clathrate
structure as an H5O2

+ unit and not as hydronium. On the other
hand, it is difficult to explain the magic number abundance82,83

of H+(H2O)21 without invoking a favorable hydrogen-bonding

arrangement such as the dodecahedral structure. At this time,
it appears that the issue has not been settled definitively.
Although it has long been recognized that many hydrogen-

bonding arrangements are possible in water clathrates, their
enumeration has never been attempted. Holland and Castleman3

were aware that enumeration of the hydrogen-bonded arrange-
ments were needed to discuss proton migration in the water
clathrate at a statistical level, but concluded that “Due to the
constraints on allowed configurations, counting the many
permutations is a formidable problem.” In this section we give
the solution to this problem for dodecahedral (H2O)20 and H+-
(H2O)20, with the latter holding the proton in either a hydronium
or H5O2

+ unit.
A. (H2O)20. Using the counting algorithm described in eq

7, we have enumerated 30 026 oriented graphs corresponding
to neutral (H2O)20. Very few have any symmetry: four have
S10, eight haveC5, 32 haveCi symmetry, and the remainder of
the oriented graphs have no symmetry. We initially selected
99 configurations, those with symmetry or having the maximum
number of five-membered rings in which the hydrogen bonds
circulate in the same direction, which turned out to be six such
rings. Using the OSS2 potential and with the initial guesses
constructed in the same fashion as described for (H2O)8, 97 out
of 99 initial guesses optimized to a structure corresponding to
the original oriented graph, the remaining two configurations
differed from the original one by flipping the direction of two
hydrogen bonds.84 Three of the optimized structures are shown
in Figure 6.
The energy of these structures also appears to correlate with

the same topological invariants as for cubic (H2O)8: an apparent
repulsive interaction between nearest neighbor double-donors
or double-acceptors and a weaker preference for rings of
hydrogen bonds circulating in the same sense.

Figure 5. Oriented graphs and optimized structures for H+(H2O)8 in
which the excess proton resides in a symmetrical H5O2

+-like bond.
The symmetry group of the graph is also indicated. Initial guesses from
graphs1 and2 optimized to the local minima shown above. Structures
3 and 4 revert to the hydronium-like structure1 in Figure 4 as the
excess proton migrates toward the oxygen hydrogen bound to one
double-donor and one double acceptor (upward as shown in the figure).
Our attempts to optimize initial guesses based on3 and4 produced
local minimum1 of Figure 4. Figure 6. Lowest energy (1) S10, (2) Ci, and overall lowest energy (3)

C1 structures for (H2O)20. The symmetry designation refers to the
oriented graph which corresponds to the structure. TheS10 structure1
has 10 nearest neighbor double-donor (and, by topological constraints,
10 nearest neighbor double-acceptor) pairs, while theCi structure2
has 4 such pairs andC1 structure3 has only the minimum possible
number of 3 such pairs. Both structures2 and3 have the maximum
possible of six five-membered rings in which all the hydrogen bonds
circulate in the same direction, while structure1 has only two such
rings.

E(cm-1) ) -69788.01+ 1246.64n2D-2D - 231.203n5-ring

(28)
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A comparison of the actual binding energies (relative to 20 water
monomers) and the energies predicted by the above fit to
topological properties is given (filled symbols) in Figure 7. On
the basis of a fit to these topological properties, an additional
94 structures were selected as likely candidates for low-energy
structures. As confirmed in Figure 7 (open symbols), all these
structures turned out to be very stable. The OSS2 model binding
energy (relative to 20 free water molecules) of our most stable
dodecahedral (H2O)20 structure was 9.64 kcal/mol per water
molecule.
The energy difference between the least and most stable of

the 99+ 94 structures we examined was 0.0843 au, or 52.9
kcal/mol, indicating that the hydrogen-bonding arrangement has
considerable impact on the overall stability of these clathrates.
It is not clear whether previous studies of dodecahedral clathrate
structures36,77,80,81adequately searched through the many pos-
sible hydrogen-bonding arrangements. For example, we would
predict that the structure pictured in Figure 1 of ref 81 would
be a very unfavorable structure because it contains 10 nearest
neighbor double-acceptor (and 10 nearest neighbor double-
donor) pairs.
We also compared the predictions of the OSS2 potential63

with the semiempirical PM3 method. The trends in the two
models are in agreement, as there is a roughly linear relation
between the OSS2 and PM3 energies (crosses and dotted line
inFigure 7). However, the range of the PM3 energies is less
than that of the OSS2 potential, the PM3 varying∼0.047 au or
29.7 kcal/mol between lowest and higher energy structure. This
is to be expected, since the PM3 model is known to underes-
timate the binding energy in water clusters by roughly 30-
40%.63

B. H+(H2O)20. We have considered two ways for a proton
to add to a dodecahedral water cage, either as a triple-donor
hydronium unit, for which there are 87 413 hydrogen-bonding
topologies, or in a symmetrical H5O2

+ bond, for which 42 906
topologically distinct hydrogen-bonding arrangements are pos-
sible. In both cases, none of the oriented graphs have any
symmetry. Study of double- or single-donating hydronium units
is tractable with the methods developed here, but these structures
were not considered in this work.
Of the 87 413 hydrogen-bonding topologies for H+(H2O)20

containing a hydronium triple-donor, we selected 201 candidates
for low-energy structures based on trends observed for (H2O)8,
H+(H2O)8, and neutral (H2O)20. [For a preliminary screening,
we added a term 400n2A-Hyd to eq 28.] Of the 201 initial guesses,
187 optimized to structures corresponding to the original
oriented graph The most stable of these structures is shown in
the top of Figure 8. In the remaining 14 of the original 201
guesses, one of the protons bound to the original hydronium
unit migrated to a neighboring water during optimization,
thereby shifting the position of the hydronium. The trend for
avoidance of nearest neighbor double-donors and double-
acceptors is obeyed in this data set: The eight lowest energy
structures were precisely the eight with the minimum possible
number of such bonds.
Equation 28 was used as a guide to select 163 candidates for

low-energy structures from the 42 906 possible initial guesses
for H+(H2O)20 with the excess proton symmetrically disposed
in an H5O2

+-like bond. In 10 of these cases, the excess proton
clearly migrated to one side of the bond during optimization,
leading to one of the 87 413 hydronium-containing structures.
From all other initial guesses, the proton optimized to a structure
that was between 2 and 10% from the midpoint, on average
near 6%. In the example shown in the bottom of Figure 8, the
excess proton is 6% from the midpoint between two oxygens.

Figure 7. Comparison of the binding energies (relative to 20 free
monomers) of different hydrogen-bonding arrangements of the dodeca-
hedral clathrate (H2O)20 and a fit (eq 28) based on topological properties.
Initially, 99 structures were optimized using the OSS potential63 (filled
symbols), starting from initial guesses based on oriented graphs selected
from the full set of 30 026 for this structure. Perfect agreement between
actual and fitted energies is indicated by the solid line in the figure.
After fitting the energy of these 99 structures to obtain eq 28, the full
set of 30 026 oriented graphs was screened to identify another 94
candidates for low-energy structures. The additional 94 initial guesses
indeed optimized to very stable structures, indicated with open symbols
in the figure. The crosses indicate the binding energy of clusters
optimized using the PM3 semiempirical model. The PM3 optimizations
used the same initial guesses as the OSS potential optimizations. The
dashed line is a linear fit to the PM3 binding energy as a function of
the OSS energy, provided as a guide to the eye confirming that the
trends of the two models are similar.

Figure 8. Examples of low-energy structures of H+(H2O)20. The top
figure is the lowest energy hydrogen-bonding arrangement found with
the proton localized in a hydronium-like configuration. The bottom
figure shows a local minimum in which the excess proton is shared
between two water molecules in an H5O2

+-like arrangement. The arrows
indicate the hydronium- or H5O2

+-like unit in each case.
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There is an energy gap of roughly 2.3 kcal/mol favoring the
lowest energy hydronium-like structures over the H5O2

+-like
structures, in contrast to our results for H+(H2O)8. The OSS2
model binding energy of our lowest energy H+(H2O)20 (relative
to 19 free waters and one H3O+) is 13.38 kcal/mol per oxygen.

IV. Discussion

Through advances in molecular beam and spectroscopic
techniques, the range of water clusters open to detailed
experimental study is rapidly expanding.41-50 This has provided
a rigorous testing ground for potential models of water, thereby
enhancing our capability to model aqueous chemistry in, for
example, biological or environmental applications. Interpreting
these results depends upon accurate potential models and
methods for enumerating cluster structures.
Analytic methods for the enumeration of cluster structures,

like the one presented in this work, can complement and guide
numerical techniques, especially for larger clusters in which the
number of stable structures grows exponentially with cluster
size. For example, we have shown that on the order of 3×
104 local minima, corresponding to different hydrogen-bonding
topologies, are to be expected for the dodecahedral clathrate
(H2O)20. Presumably this information would be difficult to
obtain numerically, and it would not be obvious when the
numerical search exhausted all possible structures. Moreover,
our enumeration of hydrogen-bonded arrangements can be used
as input for statistical theories of cluster dynamics3 for which
this information has been previously lacking.
For the particular case of (H2O)20, we have found that

approximately 50 kcal/mol separates the highest and lowest
energy structures of a small subset of the∼3 × 104 possible
structures. Therefore it is not possible to reach conclusions
about the relative stability of the clathrates relative to other
structures without a representative sampling of possible hydrogen-
bonding topologies, underscoring the need for enumeration
techniques.
Enumeration of hydrogen-bonding topologies can be done

for nonsymmetric structures, as well as the highly symmetrical
cages treated here. For example, all possible hydrogen-bonding
topologies for (H2O)6, the object of detailed experimental and
theoretical study recently,15,30,45can be enumerated using the
symmetric group of order 6!. We have done this exercise and
found 1620 oriented graphs, of which 1392 are connected.
Generating initial guesses for geometry optimization would be
more difficult than for the symmetric cages studied in this work
and has not been attempted here. A large set of candidates for
optimization may facilitate subsequent numerical study.
Within several potential models, energetic trends can be

correlated with cluster topology in the cubic and dodecahedral
cages we have studied. The most significant trend is an energy
cost associated with nearest neighbor double hydrogen bond
donor or acceptor molecules. This leads us to derive a predictive
expression for the stability of the cubic and dodecahedral water
clusters. Using this we could see that there exists a class of
particularly stable water dodecahedra. This suggests that
consideration be given to the multitude of hydrogen-bonding
topologies, first enumerated in this work, in calculations of the
relative stability of the various forms of (H2O)20, H+(H2O)20,
and H+(H2O)21. These trends and the enumeration techniques
developed here provide guidance and a set of hypotheses for
further testing with more sophisticated calculations on water
clusters.
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