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Graph theoretical techniques are demonstrated to be of considerable use in the search for stable arrangements
of water clusters. Inspired by the so-called “ice rules” that govern which hydrogen-bond networks are physically
possible in the condensed phase, we use graphical techniques to generate a multitude of local minima of
neutral and protonated water clusters using oriented graph theory. Efficient techniques to precisely enumerate
all possible hydrogen-bonding topologies are presented. Empirical rules regarding favorable water neighbor
geometries are developed that indicate which of the multitude of hydrogen-bonding topologies available to
large water clathrates (e.g., 30 026 for()g) are likely to be the most stable structures. The cubi(kl

and dodecahedral @), clusters and their protonated analogues are treated as examples. In these structures
every molecule is hydrogen bonded to three others, which leads to hydrogen-bonding topology fixing the
cluster geometry. Graphical techniques can also be applied to geometrically irregular structures as well.
The enumerated oriented graphs are used to generate initial guesses for optimization using various potential
models. The hydrogen-bonding topology was found to have a significant effect on cluster stability, even
though the total number of hydrogen bonds is conserved. For neutral clusters, the relationship between oriented
graphs and local minima of several potential models appears to be one-to-one. The stability of the different
topologies is rationalized primarily in terms of the number of nearest neighbor pairs that both have a free OH
bond. This leads to the identification of water dodecahedra of greatest stability.

Considerable effort has been devoted to the theoretical essential for the study of larger clusters, such as th©jH
prediction of the locally stable configurations of small water and H(H,O), cage structures. These structures are treated in
clusters, the identification of the global minimum from among this paper and are shown to possess tens of thousands of distinct
the many local minima, and the experimental testing of these (not symmetry-related) local minima. Candidates for the most
resultst~4%80 The motivation for this intense interest is the need stable of these structures are presented here.
to accurately model water as a solvent for chemical processes, The central physical assumption leading to an analytical

especially for modeling biochemical and environmental pro- method for enumeration of local structures is that each water
cesses. The s_tgdy_ of finite clusters prowslles a testing ground olecule may participate in a maximum of two hydrogen bonds
for deta!led _verlflcatlpn of models of waté¥; 51 which can then as a hydrogen donor and, through the two lone pairs, up to two
be applied in bulk situations. The locally stable arrangements hydrogen bonds as an acceptor. These ideas have been central
and thermal behavior of water clusters are also of fundamentali e jiterature on water and ice for many ye#rs8 Their
intellectual interest, the main issues being the unusual properties

£ fini d to the bulk and h he bulk limi expression for solid water structures are the so-called “ice rules”
offinite systems compared to the bulk and how the bulk limit * - «gernat-Fowler rules? In the liquid phase, they motivate
is approached as cluster size tends toward macroscopic

g . older flickering crystal theorié8 and more recent random
dimension$?2-55 g cry

network models for water. A hydronium ion can donate up to

Several attempts have been made to systematically generatg, oo hydrogen bonds. By inspection of the many published
the locally stable geometries of small water clusters and predict structures available for water clusters and bulk water, virtually

their relgtive energies. .Tsai anq Jordan have p_erformed the mosty, hydrogen bonds between water molecules can be assigned a
exhaustive searches using an eigenmode-following algofithit. direction, which we take to be from donor to acceptor. The

Whleof moderatc compaone o o Sl e 1 on oo s symmettcal ychogen bods hcsepotoype
y PIAY'is the HO," ion3561 Structures with the excess proton in a

increases in complexity with cluster size, not only because of . .

) . . . 7 -~ symmetrical hydrogen bond can also be enumerated using graph
the increasing cost of evaluating the potential and its denvatlvestheor by assianing either a nondirectional or empty bond to
but also because the number of local minima increases y Dy assigning Pty

the unit carrying the excess charge.

exponentially with cluster size. The purpose of this work is to o ) )
provide some analytical guidance and theoretical understanding When a water molecule participates in four (Figure 1a) or
to complement previous numerical work. This guidance proves three (Figure 1b,c) hydrogen bonds, its position is fixed by those

bonds and we expect only a single minimum energy position

* Ohio State University. for that water molecule. In low-energy structures of small (
* Stockholm University. < 25) water clusters, four-coordinated waters are relatively rare,
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Figure 1. Depiction of a water molecule participating in (a) two hydrogen bonds as a donor and two as an acceptor, (b) two hydrogen bonds as

a donor and one as an acceptor, (c) one hydrogen bond as a donor and two as an acceptor, (d) no hydrogen bonds as a donor and two as an acceptol
(e) two hydrogen bonds as a donor and none as an acceptor, @amd ) one hydrogen bond as a donor and one as an acceptor, showing the two
possible orientations in the latter case.

occurring for example in multiple-cube structures, but three- by the hydrogen bonding arrangement, each local minimum of
coordination is quite common. A doubly-coordinated, double- a water cluster corresponds to a single oriented graph. As
acceptor or double-donor water (Figure 1d,e) may also be fixed discussed above, this occurs when the water molecules partici-
by virtue of its hydrogen bonding to other waters. However, a pate in two or more hydrogen bonds, except for the single-
double-coordinated, single-donor water should have at least twodonor/single-acceptor case where two local minima would
minimum energy positions (Figure 1), according to which correspond to a single graph. For some water clusters, it appears
lone pair accepts an incoming hydrogen bond. Singly-bonded that the relationship is also one-to-one, that for each oriented
waters should be rather floppy. graph a corresponding-local minimum in found. For protonated
The topology of hydrogen bonds in a water cluster is water clusters, our experience is that not every graph has a
summarized by an oriented graph, that is, a set of vertices andcorresponding local minimum. These conclusions may depend
at most one oriented line connecting each pair of vertices. Thison the potential energy surface and skill in guessing initial
idea has been previously pursued by Radhakrishnan andgeometries for optimization. When our working assumption is
Herndon®? They performed ab initio calculations for selected accurate, as would be expected for compact structures, oriented
structures, based on oriented graphs, for clusters as large as thgraphs provide a valuable enumeration of the local minima of
cyclic octamer. Radhakrishnan and Herndon then correlatedwater clusters. In this paper we discuss enumeration techniques
their ab initio results with topological invariants of the oriented (section [), cubic clusters of eight waters (section Il), and
graphs. Our work is in that respect similar in spirit to that of dodecahedral cages of 20 waters (section Ill). We conclude
Radhakrishnan and Herndon. In our work, new graph derivation with an assessment of the utility of graphical techniques for
methods for H-bonded clusters are presented, which allows usenumeration of water structures.
to tackle, in a systematic manner, much more complex
structures, including a 20-member dodecahedral cage, where. Enumeration Techniques
the enumeration problem has not previously been solved. We
focus on structures in which the waters are minimally three- ~ Enumeration techniques for oriented graphs were developed
coordinate, so it is more likely that physical local potential by Harary”with some specific formulas and methods for locally
energy minima are in one-to-one correspondence with orientedrestricted graphs (as when ice rules are enforced) later offered
graphs. We also consider both neutral and protonated clustersby Harary and Palmeé®.%® The general class of techniques
using the “OSS2” potential energy surface developed by without local constraints is based on a theorem by Polya and is
Ojamiz, Shavitt, and Sing&tand semiempirical PM3 calcula- ~ described in several text$.72 Polya’s theorem gives us an
tions$465 to extend the description to protonated clusters. A upper bound to the number of hydrogen-bonding arrangements,
trend we observe for clusters of 8 and 20 water molecules, since at this level the ice rules are not enforced.
namely destabilization of the cluster associated with adjacent Polya’s theorem gives the total number of oriented graphs
double-donor or double-acceptor water molecules, was previ- with m bonds based on the symmetry group of the vertiées,
ously noted by Smith and Dang for €#1,0)2¢?? and (HO)0. that is, the set of all permutations of the vertex labels that
Our working assumption is that, when the molecules are fixed maintain the bonding arrangement. The symmetry group on
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the vertices induces an isomorphic symmetry group on oriented manipulation of~120230 ~

McDonald et al.

10*2 terms for the dodecahedron),

bonds. Each member of the bond group must be resolved intoand we were forced to develop a more efficient procedure.

independent cycles, from which a cycle index polynomial is

Our graphical enumeration procedure for locally restricted

generated. To enumerate oriented graphs, the appropriate cyclgraphs also rests upon representation of graphical configurations

index polynomial i§7.68.71

1 le]

ey (|_| h) @)

where the sum indexed hyis over all members of the group
G of permutations on oriented bonds, the product indexekl by

is over all pairs of converse cycles of group elemiermnd ny

is the length of cyclé or group element. The converse of a
cycle is the cycle generated by reversing every oriented bond..
Self-converse cycles are not included in the cycle index .

polynomial.

We have determined the cycle index polynomials for a cube
and dodecahedron appropriate for counting of oriented graphs:

= 1/,4(bi? + 3bj + 6b5 + 6b7 b + 4bS + 803 +
1207 + 8b3) (2)

cube

Zyodec= T1oo(03° + 1507 b3° + 1505 + by + 2003° +
2402 + 2003 + 24b3) (3)

Polya’s theorem relates the number of symmetry-distinct

graphs withm oriented bonds to the coefficient af" in the
polynomial obtained by replacing, with 1 + 2x" in the cycle

with polynomials. A factor ofvjx; in a term of the polynomial
indicates a bond in which vertéxdonates a hydrogen bond to
j (i.e., an oriented bond pointing fromto j). All possible
oriented graphs are generated by the polynomial

(‘M Xq +lu]V| i (6)

bond pairs ij

Each factor givjx; + ujvix;) gives the two possible orientations

at each bond pair. The above polynomial enumerates graphs
in which each possible bond pair is occupied by an oriented
If unoccupied bonds are also to be included in the
enumeration, thenu(v;x; + w;vix;) is replaced with (H- uiv;x;

+ ‘LLjVini).

Since the power of;; andv; in each term gives the number
of outgoing and incoming bonds at vertexrespectively, the
ice rules for neutral clusters are enforced by annihilating an
terms in eq 6 in which the power of or v; exceeds 2. For
clusters containing a hydronium, one vertex is allowed to have
three outgoing bonds.

So far, this procedure would enumerate many oriented graphs
that are related to another by a symmetry operation. The next
step would be a partition of the terms into equivalence classes,
with members of each equivalence class related to each other
by a permutation of the vertices. Selection of a single
representative from each equivalence class completes the

index polynomials. For the cube and dodecahedron, the resultsanymeration.

are

cube: 1+ x+ 106 + 43¢ + 188&¢* + 548¢C + 12928 +

215X + 27248 + 23928 + 1471° + 528t + 1112
4)

dodecahedron: % x+ 22 + 287%¢ + 3755¢ +
38160¢ + 3175488 + 2172664  +12490998° +
61049726° + 256403818 + 932326512 +
2952363668 + 8175660672" + 19855186704 +
42357535328 + 79420431072'° +
130809856896 + 188947695352 +
2386704985601 + 262537720524° +
250035717637 + 20457483904%7 +
142312814597 + 83015912504 +
39847592384° + 15326035968° + 4541038088 +

973086728 + 134217728%° + 894831%*° (5)

The number of terms in eq 6 makes the procedure, as
described so far, prohibitively lengthy. However, it can be
considerably shortened by annihilating all terms in violation of
the ice rules or related to others by a symmetry operation after
multiplication by each factongvix; + uvixi) [or (1 + piviX;

+ uviX;i) if unoccupied bonds are allowed]. In words, the set
of all graphs is incrementally constructed by decorating one
bond at a time. If two partially constructed graphs are related
to each other by a symmetry operation, they will give rise to
the same set of fully occupied graphs, to within a symmetry
operation, upon addition of more bonds. Therefore, only one
of the partially constructed graphs related to each other by a
symmetry operation need be retained at each stage. The same
considerations apply to enforcement of the ice rules. If a
partially constructed graph violates the ice rules, then all graphs
made by adding more oriented bonds will also violate the ice
rules. If we letA symbolize the operator which annihilates terms
in violation of the ice rules or which are related to others by a
symmetry operation, then symbolically we are stating that the
left and right hand sides of the following equation are equivalent

To illustrate the significance of terms in the above equation, and that the right hand side is far more efficient to enumerate.
the final term indicates that there are 8 948 312 topologically
distinct ways to arrange 30 oriented bonds on a dodecahedralA (v + uvx) =

graph. Some of these arrangements correspond to neutral bonds

clusters, some to an excess proton, and many, such as those in A ey Xg T uvXid A (v + pvixg) (7)
which a vertex has three incoming bonds, to hydrogen-bonding

arrangements that are not physically realizable. The cycle indexLater we shall see that the number of oriented graphs that satisfy
polynomials were easily generated from the permutation groupsthe ice rules is roughly 10% of the total number of oriented
using a symbolic algebra prograih. graphs.

Upon enforcement of local constrainti this work, the ice For the neutral and protonated water clusters considered in
rules—the enumeration problem becomes considerably more this work, each water molecule can be classed as single- or
complex. Harary and Palnférave given a procedure that is double-donors of hydrogen bonds and/or single- or double-
valid for local constraints. However, the algebra involved is acceptors of hydrogen bonds. A hydronium unit may also be
too lengthy, even for machine evaluation (involving, e.g., a triple donor or zero-acceptor. Withyong the number of
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hydrogen bondso the number of oxygensiyoenthe number
of excessprotons,ny = 2ng + Nyroron the total number of
hydrogens,my the number of hydrogens in hydronium units
not participating in a hydrogen bondy, the number of zero-
acceptor neutral water units;p, nzp, ... the number of single-,
double-, ... donors, amba, N14, ... the number of zero-, single-,
... acceptors, then counting the number of bonds,

Nyp + 2Ny + 3N3p = Nyong (8)
Mya + 2Nyp = Nyong 9)
oxygens,
Nyp + Nyp + Ngp = Ng (10)
Moa  Nia + Mpp = Ng (11)

and hydrogens,
2n;5 + 2n,5 + 3ngp + My = ny (12)
3N, + 20,4 + 2n,, — M, =Ny, (13)

gives the relations

nOA = nproton+ m;-i (14)
N3p = Nproton — My (15)
Nip = _er‘-l - nbond+ 2nO - 2nproton (16)

(17) Figure 2. Oriented graphs and optimized structures fos@hd. The
symmetry group of the graph is also indicated. The first eight structures

_ were also described by Tsai and Jordafthe three clusters o€,

Npa = My + Npong = No + MNoroton (18) symmetry are labeled with an extra letgem, or ¢ in accordance with
Tsai and Jordan’s notation.

(19)

Np = —My — Nggng+ 2Ng + 2N

proton

Nyp = 2My + Npgrg— No — 2r]proton
. o potential model was OSS2,which can describe both neutral
In the cubic and dodecahedral water clusters studied in this work, and protonated water clusters. Each initial guess optimized to

all waters and hydroniums are three-coordinate. In these casesa distinct locally stable structure. The oriented graphs and

Nbond = 3/2n0 andm;_i = 0, y|e|d|ng the Slmpllfled relations structures are deplcted in F|gure 2.
N =n (20) Previously, local minima of cubic (#0)s were numerically
0A — "proton enumerated by Tsai and Jordamsing a TIPS4P potential
— energy surface and an eigenmode-following surface walkin
N3p = Mproton — My (21) 9 2 , ’

algorithm?® We find that all of Tsai and Jordan’s reported
structures are in one-to-one correspondence with structures

Na = l/2nO ~ 2Mgroton (22) derived from oriented graphs. The remainder of the 14 local

N minima in Figure 2 are among the many local minima of higher

Nip = —My + 7N + Nproon (23) energy that Tsai and Jordan found but did not report. A
comparison of the energies of Tsai and Jordan's TIPS4P

Nyp = ong + Noroton (24) structures, MP2 calculations (with and without BSSE correction)

at the TIPS4P geometries, and the OSS2 potéatgabiven in
(25) Figure 3. The OSS2 potenttalfollows the MP2 trend with
greater accuracy than the TIPS4P potential.
[I. Cubic (H 20)g and H*(H20)s Itis of considerable interest to develop empirical correlations
between hydrogen-bonding topology and cluster stability,
providing guidance for further theoretical investigation and

N,p = 2m, + Y,ng — 2n

proton

The (H:O)s cluster has recently been observed experimentally,

and its cubic geometry confirmed by comparison with ab initio : L . :
. . : i ; . .~ practical rules for predicting stable isomers. The relative
pl_r|eg|ct|ons‘5h For the elgh: :fjfﬂd cportdlgated \r/]ert'fe.? Olf cubic energies of the (kD)s cube can apparently be described using
(H20)e, we have enumerate oriented grapns. nitia guessesvery localized topological properties. The curve labeled “fit”
for the structures of (bD)s were generated from these graphs . "~ :
; . 2. 7T in Figure 3 is

by placing oxygen vertices 2.8 A apart, hydrogens participating
in hydrogen bonds along the oxygeoxygen bond, and 1
unbonded hydrogens pointing radially outward from the center E(cm ") = E(D,g) + 17.7933+ 877.095_5p —
of the cubé4 The structures were first annealed by Monte Carlo 75.6473),_,4 (26)
simulated annealing (only energy-lowering moves accepted, i.e.,
T = 0 K), followed by conjugate gradient refinement. The whereE(D,y) is the energy of th®,q structurespyp-op is the
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Figure 3. Energy differences of cubic @@)s clusters from the energy

of the Dy structure. The plot includes structures calculated using the
TIPS4P potential by Tsai and Jord&nyIP2 level ab initio energies
calculated at the TIPS4P geometries also taken from the work of Tsai
and Jordand? (results with and without BSSE correction are almost
indistinguishable on this plot), and energies calculated by us using the
0SS2 potentid® Also shown is a fit (eq 26) to the relative energy of
the structures based on two topological invariants, the number of nearest
neighbor double-donors (or double-acceptors) and the number of four-
member rings in which the hydrogen bonds all circulate in the same
direction. The order of the structures corresponds to that in Figure 2.

Figure 4. Oriented graphs and optimized structures foi(iH,O)s in
number of nearest neighbor double-donors (according to the which the excess proton is localized on one oxygen in a hydronium-
topological constraints given in eqs 225, Nop—2p = Naa—2a, like unit. The symmetry group of the graph is also indicated. We were

the number of nearest neighbor double-acceptors),nang only successful in optimizing initial guesses bast_ed_on graptginto

is the number of four-men?bered rings in WhiF():h aI)I hydrggen structures CﬁrreSpOEdmg t? t_h_osle graphs. Gbmbtémaed t%‘t)g;gpgn
i i . ) structure shown above. Initial guesses based on gr

bonds are oriented in the same direction. The above formulaoptimized to the same structure as grdphn|t|a| guesses based on

indicates that the relative energy of different hydrogen-bonding graphsl0and11optimized to the samed®,"-like structures associated
arrangements in (}D)g correlates most strongly with an  Wwith graphs2 and1, respectively, in Figure 5.
effective repulsion associated with nearest neighbor double-

donors or -acceptors. This repulsion may arise from the fact |t occurred to us that long-range electrostatics might dominate
that for adjacent double-acceptors each water molecule has anhe energetic trends in the protonated cluster. However, a crude
unbound OH bond sticking out from the cluster. Repulsion estimate of chargedipole couplings based on bond dipoles
between these positively charged H-atoms might play a role in along each of the oriented edges revealed no difference among
destabilizing these neighbor pairs. Elucidating the physical the 11 graphs (Figure 4) found forH,0)s. The energies of
mechanism behind these trends will be left to future theoretical different hydrogen-bonding arrangements of protonatéd H
investigations. In this context, note that Radhakrishnan and (H,0)s do seem to be correlated with local topological features,
Herndon have previously developed correlations between thejust like their neutral counterparts. Compared to the neutral
energies of water clusters and topological invaridfts. cluster, there is an additional topological invariant based on
There are 11 oriented graphs with three outgoing lines at one nearest neighbor sitings available to describe the number of
vertex that correspond to protonated (H;O)s in which the double-donor or double-acceptor waters near the hydronium.
excess proton associated with a single oxygen in a hydronium-In addition tonzp-2p andns-ing, Which have the same meaning
like configuration (Figure 4). We could generate only six as ineq 26, we chosga-yq, the number of double-acceptors
structures with hydronium-like protons from the 11 initial adjacent to the hydronium, to be the additional parameter in
guesses corresponding to the oriented graphs. In some casedhe following fit
initial guesses for one topological arrangement Gf(HLO)s
optimized to a structure associated with another oriented graph.E(cm %) = E(1) — 504.465+ 1107.8%,p_, +
In other cases, optimization left the excess proton in an 506.75N,5 g — 183.799
symmetrical HO,"-like bond. In one case, optimization led

to an open, noncubic structure. Initial guesses were generatedyhereE(1) is the energy of structurkin Figure 4. The energy

in the same manner as for the neutral cluster with two cost of adjacent double-donors and gain for circulating rings is
exceptions. Firstly, the HO—H angles in the hydronium unit  simijlar to that in the neutral cluster. In addition, there is a
were opened up slightly. Secondly, we found that an initial preference for double-donors to be adjacent to the hydronium.
bond length of 2.8 A sometimes optimized tg®4"-like bonds The symmetry-distinct oriented graphs that correspond to
in which the excess proton was roughly symmetrically placed protonated Fi(H,O)s in which the excess proton resides in a
between two oxygens. When this occurred, setting the initial symmetrical HO,"-like bond can be easily enumerated by
bond length to a slightly larger value of 3.0 A could force the leaving that bond empty. There are four such oriented graphs,
excess proton to localize in a hydronium unit in some cases, as shown in Figure 5. Initial guesses from two structures, those
while in others optimization still yielded ans8,*-like excess with all four waters hydrogen bound to thes®ht unit
proton. It is possible that we could have found more structures symmetrically configured with respect to the®* as double-
with hydronium-like protons using more clever initial guesses acceptors, could be optimized to local minima with the proton
for optimization or with a different potential energy model. localized symmetrically between two oxygens. The two

(27)

4—ring
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Figure 5. Oriented graphs and optimized structures folH:O)s in
which the excess proton resides in a symmetriceD#i-like bond.

The symmetry group of the graph is also indicated. Initial guesses from
graphsl and2 optimized to the local minima shown above. Structures

3 and 4 revert to the hydronium-like structurke in Figure 4 as the
excess proton migrates toward the oxygen hydrogen bound to one
double-donor and one double acceptor (upward as shown in the figure).
Our attempts to optimize initial guesses based3cemnd 4 produced
local minimum1 of Figure 4. Figure 6. Lowest energyX) S, (2) Ci, and overall lowest energ)

C: structures for (HO). The symmetry designation refers to the
structures,3 and 4 in Figure 5, in which the four waters oriented graph which corresponds to the structure. Sihstructurel

hydrogen bound to the 4@, unit were not symmetrically has 10 nearest neighbor double-donor (and, by topological constraints,
configured, both optimized to the hydronium-like structdre 10 nearest neighbor double-acceptor) pairs, whileGhstructure2
in Figure 4. Both structure8 and 4 in Figure 5 revert to has 4 such pairs an@; structure3 has only the minimum possible

number of 3 such pairs. Both structur2sind 3 have the maximum

structurel in Figure 4 by a slight deformatiermigration of possible of six five-membered rings in which all the hydrogen bonds
the excess proton toward the oxygen which is hydrogen bound circulate in the same direction, while structuréhas only two such

to a double-acceptor and double-donor. rings.

1. Dodecahedral (H20)20 and H*(H20)20 arrangement such as the dodecahedral structure. At this time,

Kassner and Hag@hfirst proposed that the abundance of it appears that the issue has not been settled definitively.
Although it has long been recognized that many hydrogen-

protonated water clusters §8), nearn = 20, 21 could be . e i lath hei
explained by dodecahedral clathrate structures. Since that time,bondlng arrangements are possible in water clathrates, their

dodecahedral clathrate structures have been invoked on numer€Numeration has never been attempted. Holland and Castieman

ous occasions to explain magic number phenomena in beamWVere aware that enumeration of the hydro_gen-_bonded arrange-
experiment€:11.76.77 The regularity of the geometrical structure, ments were needed to discuss proton migration in the water

or even whether the hypothesized dodecahedral structure isclathrate at a statistical level, but concluded that “Due to the

actually present, has been debated in the literature. Plummer/cONStraints on allowed configurations, counting the many
and Cherf8 using the intermolecular potential of Stillinger and Permutations is a formidable problem.” In this section we give

RahmarP® found that the dodecahedral cage was stable to 200 the 50'”@” to this problem for dodecahedra}b@)lzo and W',
K in molecular dynamics simulations. Nagashima ef’al. (H20)20, with the latter holding the proton in either a hydronium

observed a defected dodecahedral cage surrounding a centrdff’ HsO," unit. ) . ) . )
ammonium ion in Monte Carlo simulations of £8)20NH; . A. (H20)z0. Using the counting algorithm described in eq
Kozack and Jorda®: using a potential model for H{H,0), in 7, we have enumerated 30 026 oriented graphs corresponding
which a single proton was added as a distinct ionic spééies, to ne_utral (HO)o. Very few have any symmetry: fo_ur have
searched for minimum energy structures ofQbo, H(H20)q0, Sto, elght haveCs, 32 haveC; symmetry, and the_ r_e_malnder of
and H(H:0)1. They found that Fi(H,O)s was most stable the ongnted graphs have.no symmetry. WQ initially sel_ected
in a highly distorted clathrate, hardly recognizable as a dodeca—99 conﬂgurguons, those W'th. symmetry or having the maximum
hedron. Khan investigated the stability ofB)so, H*(H20)s0, number of five-membered rings in which the hydrogen bonds

and H"(H,0),1 using the semiempirical ZINDO method, findin c_irculate ir_1 the same direction, .WhiCh t““f‘ed OUt.t(.) _be six such
stable éoée)czéhedrgl structupég? Fémith and Dang studied Iow-g rings. Using the OSS2 potential and with the initial guesses
energy structures and thermal properties of (EsO)y clus- constructed in the same fashion as described feDfi} 97 out

ters?2 They found that dodecahedral clathrates were unstable of 99 initial guesses optimized to a structure corresponding to

with respect to defected structures in which five-member rings ghf? orlglfnal orlrt]entec_i gralph, ths rfl_ma'“'”%“"é‘_’ cor_1f|gurfat|ons
were replaced pair a four- and six-membered ring. They hl dere r%m td§ or;]gma (f)nr? y .|p.p|ngt e direction o htwo
interpreted their findings as an energy cost associated with. ydrogen bonas: Three of the optimized structures are shown
adjacent double-acceptors or -donors, anticipating the trends we Figure 6. .
The energy of these structures also appears to correlate with

observe in a broader class of structures. Using density th tonological i iant f bi ; A
functional methods, Laasonen and KRifound that dodeca- € same topologicatinvariants as for cu '(?2@%' an apparen
repulsive interaction between nearest neighbor double-donors

hedral H(H;0)z1 was not a stable structure and thalt(H;O)zo or double-acceptors and a weaker preference for rings of
was either a highly defected dodecahedron or that the excesg d bond pto lating in th P 9
proton might be shared between two waters in the clathrate ydrogen bonds circulating in the same sense.
structure as an #D,™ unit and not as hydronium. On the other 1
hand, it is difficult to explain the magic number abund#Ré&& E(cm 7) = —69788.01+ 1246.64,_,p — 231.2015_
of HT(H20),1 without invoking a favorable hydrogen-bonding (28)
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Figure 7. Comparison of the binding energies (relative to 20 free
monomers) of different hydrogen-bonding arrangements of the dodeca-
hedral clathrate (D)0 and a fit (eq 28) based on topological properties.
Initially, 99 structures were optimized using the OSS potéftiéilled
symbols), starting from initial guesses based on oriented graphs selected
from the full set of 30 026 for this structure. Perfect agreement between
actual and fitted energies is indicated by the solid line in the figure.
After fitting the energy of these 99 structures to obtain eq 28, the full Figure 8. Examples of low-energy structures of {#H,0),0. The top
set of 30 026 oriented graphs was screened to identify another 94figure is the lowest energy hydrogen-bonding arrangement found with
candidates for low-energy structures. The additional 94 initial guessesthe proton localized in a hydronium-like configuration. The bottom
indeed optimized to very stable structures, indicated with open symbols figure shows a local minimum in which the excess proton is shared
in the figure. The crosses indicate the binding energy of clusters between two water molecules in as®3'-like arrangement. The arrows
optimized using the PM3 semiempirical model. The PM3 optimizations indicate the hydronium- or #D,"-like unit in each case.
used the same initial guesses as the OSS potential optimizations. The
dhasrggsllne isa Ilnear_gt go the PM_Sdblndmhg energy a]E a _functrllon ch]f B. H*(H20)20. We have considered two ways for a proton
: c energy, provided as a guide to the eye confirming that the v, 544 15 5 dodecahedral water cage, either as a triple-donor
rends of the two models are similar. . . : .
hydronium unit, for which there are 87 413 hydrogen-bonding
A comparison of the actual binding energies (relative to 20 water topologies, or in a symmetricald®," bond, for which 42 906
monomers) and the energies predicted by the above fit to topologically distinct hydrogen-bonding arrangements are pos-
topological properties is given (filled symbols) in Figure 7. On sible. In both cases, none of the oriented graphs have any
the basis of a fit to these topological properties, an additional symmetry. Study of double- or single-donating hydronium units
94 structures were selected as likely candidates for low-energyis tractable with the methods developed here, but these structures
structures. As confirmed in Figure 7 (open symbols), all these were not considered in this work.
structures turned out to be very stable. The OSS2 model binding Of the 87 413 hydrogen-bonding topologies fot (H20)20
energy (relative to 20 free water molecules) of our most stable containing a hydronium triple-donor, we selected 201 candidates
dodecahedral (bD),0 structure was 9.64 kcal/mol per water for low-energy structures based on trends observed fgDJg
molecule. H*(H20)s, and neutral (). [For a preliminary screening,

The energy difference between the least and most stable ofwe added a term 40@,—1yq to eq 28.] Of the 201 initial guesses,
the 99+ 94 structures we examined was 0.0843 au, or 52.9 187 optimized to structures corresponding to the original
kcal/mol, indicating that the hydrogen-bonding arrangement has oriented graph The most stable of these structures is shown in
considerable impact on the overall stability of these clathrates. the top of Figure 8. In the remaining 14 of the original 201
It is not clear whether previous studies of dodecahedral clathrateguesses, one of the protons bound to the original hydronium
structure® 77-8081gdequately searched through the many pos- unit migrated to a neighboring water during optimization,
sible hydrogen-bonding arrangements. For example, we wouldthereby shifting the position of the hydronium. The trend for
predict that the structure pictured in Figure 1 of ref 81 would avoidance of nearest neighbor double-donors and double-
be a very unfavorable structure because it contains 10 nearesacceptors is obeyed in this data set: The eight lowest energy
neighbor double-acceptor (and 10 nearest neighbor double-structures were precisely the eight with the minimum possible
donor) pairs. number of such bonds.

We also compared the predictions of the OSS2 potéhtial Equation 28 was used as a guide to select 163 candidates for
with the semiempirical PM3 method. The trends in the two low-energy structures from the 42 906 possible initial guesses
models are in agreement, as there is a roughly linear relationfor H*(H;0),o with the excess proton symmetrically disposed
between the OSS2 and PM3 energies (crosses and dotted linén an HsO,™-like bond. In 10 of these cases, the excess proton
inFigure 7). However, the range of the PM3 energies is less clearly migrated to one side of the bond during optimization,
than that of the OSS2 potential, the PM3 varyin@.047 au or leading to one of the 87 413 hydronium-containing structures.
29.7 kcal/mol between lowest and higher energy structure. This From all other initial guesses, the proton optimized to a structure
is to be expected, since the PM3 model is known to underes-that was between 2 and 10% from the midpoint, on average
timate the binding energy in water clusters by roughly-30 near 6%. In the example shown in the bottom of Figure 8, the
40%53 excess proton is 6% from the midpoint between two oxygens.
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